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Abstract. Ihe classical and quanmm systems related to the p u p  SU(I. 1) are mnsidered. 
The Hannay angle is &dated and its relation to Berry’s phase established. 

1. Introduction 

It is now well known [l] that Beny’s phase possesses, for integrable systems, a classical 
counterpart called Hannay’s angle. This consists of an extra shift picked up by the angle 
variables of the system as the parameters undergo a closed adiabatic excursion. Berry [2] 
established the precise relationship between Berry’s phase in the semiclassical limit and 
Hannay’s angles (for mathematically rigorous treatment see 131). His proof applies to the 
quantum systems obtained by quantizing the classical systems with the standard phase space 
(q,  p ) .  The quantum systems with a finite number of levels (‘spin’ systems) were considered 
by Gozzi and Thacker [4] and Giavarini et al [5].  The strategy was to show that a quantum 
system with a finite number of levels has a straightforward classical counterpart in terms of 
Grassmann variables. The Hannay angles for these classical Grassmannian systems were 
then calculated and compared with the corresponding Berry’s phase. The result agreed with 
Berry’s semiclassical formula. Such an analysis, although very elegant, has a slightly formal 
character because the classical Grassmannian system can hardly be viewed as a classical 
limit of the corresponding quantum one. Maamache et al [6] presented a very nice analysis 
of Beny’s relation, establishing a direct link between the quantum and classical transports. 
The main observation was that the proper tool for describing the semiclassical states is 
provided by the coherent states. By exploiting this idea the authors of [6) were able to give 
a straightforward derivation of the relation between the classical and quantum aholonomies. 
The generality and elegance of this approach allows one to treat the systems with a finite 
number of levels, which have no standard classical counterpart. Inspired by this paper, we 
considered [7] the simplest system with a finite number of levels, the quantum spin in an 
external magnetic field. In order to analyse the link between Berry’s phase and Hannay’s 
angle we have used the general approach to the problem of a classical limit for quantum 
systems, developed in a nice paper by Y a e  [SI and based on some earlier ideas due to 
Berezin [9]. The main ingredients of this approach are the coherent states and the concept 
of quantization on coadjoint orbits. 

In the present paper we consider the simplest non-compact Lie groupSU(1.1). In 
section 2 we describe very briefly the standard symplectic structure on the coset space 
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SU(l , l ) /U(l) .  Given this slmcture and an arbitrary classical Hamiltonian the relevant 
action-angle variables are introduced and the formula for Hannay angle (equation (24)) is 
derived for the family of Hamiltonians obtained by the action of SU(1, 1) on some initial 
Hamiltonian. It takes an especially simple form if the initial Hamiltonian is invariant under 
the U(1) subgroup. In section 3 the quantum dynamics based on u n i w  representations 
of SU(1,I) (discrete series) is considered and, fobwing Yaffe, the link with classical 
dynamics is established. The semiclassical relation between Berry's phase and Hannay's 
angle is shown to be here an exact one. This section is concluded with some remarks 
conceming the SU(1, 1) approach to the harmonic oscillator. 

Let us conclude the introduction with a few remarks. We will be dealing with a 
generalized phase space and it is advantegous to write aU formulae in such a way that 
all canonical variables are considered on equal footing. This can be achieved in any 
particular case. For example, consider the formula for the function generating the canonical 
transformation to the action-angle variables 1101 

here integration is along a path lying on invariant toms. This formula can be put in a form 
more symmetric with respect to q and p. Namely, if we define 

S = s - i p q  +constant 

we can write 

3(qv P. 0 = 2 (pdq - qdp)  '1 40 

and 

Here the second equation is an identity which reflects the fact that q and p are 
constrained to Iie on a torus. This is generalized as follows: we can view the generating 
function as depending on all initial canonical variables, keeping in mind that not all equations 
defining canonical transformation are then independent. 

In what foUows we consider the 'canonical' transformations which change the Poisson 
bracket. Although it is easy to modify accordingly Berry's derivation of Hannay's 
angles [2] we present here a slightly more straightforward derivation which has an obvious 
generalization in the 'non-stand" case. Let 

c = c(q, P. X) 
be the angle variable. An additional angular velocity related to the time dependence of X 
is equal to 

But 
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and 

ap(q. P .  x )  a2s a2s a r k ,  P. x) 
ax azax a12 ax =- +- 

On the other hand, taking a derivative with respect to Z, we have 

Taking the derivative of p = aS(q, I, x)/aq with respect to X gives 

a2s ai(q.p.x) azs 
aqaz  ax aq ax ’ 02- f- 

By combining the three last equations we arrive at the Berry formula, namely 

2. Classical dynamics on SU(l. l) /U(l)t  

In this section we consider classical dynamics on coset space SU(l, l) /V(I).  

general element U can be Written in the form 
The smcture of the coset space SU(1, l) /U(l)  can be revealed by noting that the 

Therefore, the coset space SU(1, l) /U(l)  can be viewed as an open unit disc in the complex 
plane (Poincar.4 disc). 

In order to study the geometry of SU(1, l ) /U(l)  we need the Cartan forms. They read 

i d t  
w- -- 

1 - ItP’ 

dh = 2io- A o+ 

It is straighforward to check the validity of Cartan-Mauer equations 

do+ = Si A o* . (3) 
Next, the invariant 2-form R can be introduced 

d< A d? (4) 
1 n o+ Am- = 

(1 - ls12)2 
which is closed, dQ = 0, and non-degenerate. The symplectic structure introduced above 
allows us to define the Poisson bracket. Given any two functions f = f (C. t ) ,  g = g(F. f )  
we put 

t All relevant concepts and results concerning SU(1, 1) xe Wen from h e  book by Perelomov [I I] 
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where a is a real constant to be specifed later. For any real Hamiltonian H = H ( I ,  f )  we 
can write the Hamiltonian equations of motion 

These equations follow from the variational principle 

Let us note that the first term in the integrand is basically the Cartan form A; it plays 
the same role as i (pdq  - q dp) in standard dynamics: its exterior derivative gives the 
symplectic form. 

The phase space of our system is two-dimensional. Therefore, for any conservative 
Hamiltonian H((, i )  we obtain an integrable dynamics. Let us assume that the equation 

H(t, f )  = E (8) 
defines a closed curve C in the phase space. The action I is defined by the equation 

which gives I as a function of E, Z = Z(E). Also, if 50 is a fixed point on C and C E C, 
we define the angle variable 

where the integration is performed along C. It is easy to check that 

b. 11 = 1. (11) 
The (I, p)-variables are the action-angle variables: I is a constant of motion while p is a 
cyclic variable depending linearly on time. 

The action of SU(1, 1) on SU(1. l)/U(l) is given by 

It is easy to check explicitly that the Poisson bracket is invariant under this transformation. 
Let us now consider the family of Hamiltonians given by the formula 

H (<, 5; 11, f ,  CO) = H ( C ( 5 ;  -% -@), f ( F ;  -U; -0)). (13) 

H ( t . f ; q ,  f , m )  = E  (14) 

Due to the invariance of symplectic structure we can immediately define the relevant action- 
angle variables. First, we note that solutions to the equation 

are related to that of 

H ( < ,  r )  = E (15) 

r -+ C(53 7% 0). (16) 

by the group transformation 
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Let C(q ,  i j .  o) (resp. C) be a curve defined by equation (14) (resp. equation (15)). Due to 
the transformation property 

We conclude that 

The generating function S(t, f l :  q ,  V, o) reads 

By virtue of equation (17) we have 

s(<, i ,  I ;  q .  i j ,  o) = ~ ( r ( t ;  -q;  -o), f ( r ;  -q;  -o), I) +terms not containing I. 

9 = 9(<, r ;  v, i j ,  0) = 9(5(5;  -11; -U), w: -11; -U))  

5 = F(t(9.n V ?  0) 

F = f (5((O3 I ) ,  1s w )  

(21) 

(22) 
is the relevant action variable. Equations (19), (22) can be solved in terms of 5 ,  i to yield 

(23) 

Therefore 

where 5(9, I) , f ( 9 ,  I) are the solutions corresponding to q = w = 0. 

(cf section 1) to calculate the relevant Hannay angles. The result reads 
Let us now assume that the parameters q. ij and o depend on time. It is straightfomard 

where C is now a closed curve in parameter space (q ,  i j ,  o), 5, < are given by equations 
(23) and 

In what follows we assume that the initial Hamiltonian depends on 151 only, H = H ( l 5 l ) .  
By virtue of  equation (9) we have 
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On the other hand, the angle variable is equal to arg 5 

9 = w < .  (27) 
Equations (=)-(U) then imply the following formula for the Hannay angle: 

A nice feature of this formula is that the Hannay angle is expressed in terms of Cartan forms 
on SU(1, l)/U(l), where U(1) consists of those elements of SU(1, 1) which commute with 
the Hamiltonian. The angle is completly independent on the particular form of the function 
H(.). 

3. Coherent states and quantum dynamics 

In this section we consider the quantum theories based on the unitary irreducible 
representations of S(I(1, 1) (the SU(1, 1) inavriant quantum systems were investigated 
in numerous papers; see, for example, [12]). The classical limit in the sense of Yaffe [SI is 
analysed and the relationship between Hannay's angle and Berry's phase, found by Beny [2] 
in the case of Heisenberg group, is reestablished. 

It is well known that SU(l.1) possesses few series representations. We shall consider 
here only the discrete series; it is sufficient to consider DE;" (the treatment of DL-) is 
analogous). The space of states is spanned by the vectors Ik, k + m ) ,  m = 0.1,. . . , 
k = 1, 9.2, . . . ; here k + m are the eigenvalues of KO, 

The eigenvectors Ik, k + m) are obtained from Ik, k) by succesive application of K+ 
Kolk, k + m)  = (k + m)lk, k + m) . (29) 

Ik, k + m) = ( m!r(2k r(2k) + m) )"Z(Kt)mIk.k). 

The Hilbert space carrying the representation DP) is our space of states of quantum 
mechanical system; the observables are constructed from the generators K,. 

The classical l i t  is defined as follows: h + 0, k -+ 00, WI = constant. This 
classical limit will be constructed according to Yaffe's receipe. First, we define the coherent 
states [ l l ,  121 

15, +) = eW+-gK-ei*Kolk, k) = eWeEK+-lK- Ik, k) e""(), (31) 
In order to find a well defined classical counterpart of our system the assumptions made in 
Yaffe's paper have to be verifed. It is easy to check that 
(i) The states I(, @), 15'. v)  are classically equivalent in the sense of Yaffe's, I(, $) - 
It', @'), if and only if 5 = c'. 
(i) The operators hKi and all their functions are classical operators in the sense of Yaffe. 

Let us find the symbols of the operators Ki .  One can easily check that 
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An arbitrary constant a appearing in the definition of the Poisson bracket (5) can now be 
fixed by demanding that the usual quantization rule ( , 1 -+ A [ ,  ] preserves Lie algebra 
relations; one obtains 

a = 2 W t .  (33) 
The correspondence between operators and their symbols provides a proper relation between 
the quantum and classical theories; let us show, for example, that the spectrum of KO can 
be found by semiclassical quantization method. Let H = hoKo be a Hamiltonian. The 
curve H(F, f )  = E is given bythe formula 

Therefore, by virtue of equation (9), 

(35) 
1 

Using the semiclassical quantization rule 

I = - ( E  - f i o k ) .  
0 

I = mh m integer (36) 
one recovers the spectrum of KO. Note that the semiclassical formula gives an exact 
answer; moreover, no Keller-Maslov index is necessary. This result may be also explained 
as folows. Let us calculate the scalar product 

The dominant contribution in the limit h -+ 0, k + CO, kk = constant; mh = constant 
comes from the state Ik, k + m )  with 

(actually, it is sufficient to take the limit m --f 03, mh = constant; see below). 

H which is the function of KO only. More precisely 
Let us now consider the family of Hamiltonians obtained from the initial Hamiltonian 

(39) 
Actually, due to equation (1) we conclude that g does not depend on o. We assume also 
that the spectrum off? is non-degenerate. g(q, f i )  can be made time-dependent by making 
the parameter 1 time-dependent. According to the general formula given in [13] it is easy 
to calculate the corresponding Berry phase. Due to the conditions 

A h  i ,  o) = U(t l ,  il,o)A(Ko)u+(11. i ,  0). 

{k, k + mlK+lk, k t = 0 (40) 

the Berry phase is expressed in terms of the Cartan form A. Namely, the following formula 
holds 
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has the form (13) with the initial Hamiltonian depending only on IC\*. The relevant Hannay’s 
angle is given by equation (28). From equations (28) and (41) we conclude that the Beny 
relation 

is obeyed. 
Let us conclude with few remarks concerning the most relevant SU(1,l) systems-the 

hannonic oscillator 1141. The Hamiltonian of generalized harmonic oscillator (with the term 
p q  f q p  present) can be expressed in term of SU(1, l )  generators. Therefore we can apply 
the formalism presented above to calculate both the Hannay’s angle and Berry’s phase. The 
results obviously agree with those obtained in [2]. This provides an altemative approach for 
the system which can be also described in terms of standard phase space ( q ,  p). However, 
io this case the classical l i t  h -+ 0 is attained within fixed representation of SU(1,I) (or, 
rather, its covering group). 

References 

[ I ]  Hannay I H 1 9 s  J. Phys. A: Moth. Gen. 18 221 
121 Berry M V 1985 I .  Phys. A: M d h .  Gen 18 I 5  
131 Ash 1, Gerard C and Roben D 1990 C o m a  Math Phys. 127 637 
[4] Goz i  E and %&er W D 1987 Phys. Rev. D 35 2388,2398 
[SI Giavarini G et a1 1989 Phys. Rev. D 39 3007 
[6] Maamache M, Provost I P and Vallee G 1990 1. Phys. A: Mdh.  Gen 23 5765 
[7] Brihaye Y et a1 1993 Phys. Rer D 47 722 
181 Yaffe L 1982 Rev. Mod. Phys. 54 4D7 
[9] Bewin F A 1978 Comun. Mafk Phys. 63 131 

[lo] h o l d  V I 1978 M d k m t i c d  Methods ofclmsicnl Mechnnics (Berlin: Springer) 
[ l l ]  Perelomov A 1986 Generalircd Cohermf Sfate3 ond their Applicatiom. (Berlin: Springer) 
[I21 Comtet A 1985 J. Math. Phys, 26 185; 1987 Ann. Phys. 173 185 

[13] Giller S et al 1989 Inr. 3. Mod, Phys. A 4 1453 
[141 Iackiw R 1988 Int. 3. Mod. Phys. A 3 285 

Baramc V et a1 1992 Ini. 1 Mod. Phys. B 6 3525; 1993 Ann. Phys. 2a5 212 

Giavanni G and Onofri E 1989 1. Math. Phys 30 659 
Cervero I and Lejarreta I 1989 3, Phys. A: Math. Gen. 22 L663 
Brihaye Y, Kosinski P and Maslanka P 1990 1. Phys. A: Math. Gen. 23 1985 


